
Liam O’Carroll January 2022

Optimization on Smooth Manifolds Crash Course

Contents

1 Introduction 2

1.1 Running examples . 2

1.2 Notation . 3

1.3 Terminology . 3

2 First-order geometry 3

2.1 First-order geometry: material not covered . 11

2.2 First-order geometry: extending beyond the embedded case 12

3 Second-order geometry 12

3.1 Second-order geometry: material not covered . 16

3.2 Second-order geometry: extending beyond the embedded case 16

4 Retractions, Taylor expansions, and optimality conditions 17

5 Quotient manifolds 23

5.1 Quotient manifolds: material not covered . 30

6 Riemannian gradient descent 30

7 Riemannian second-order methods 30

A Examples of manifolds 30

B Regarding product manifolds 30

1

1 Introduction

This is a crash course on optimization on smooth manifolds. Basically all of the definitions and
theorems are taken from [Bou20], and I’ve done my best to provide the exact places in the book
where you can find them. Unfortunately [Bou20] is a preprint, and newer versions have been released
since I made these notes. The version I used to create these notes was compiled on November 9,
2020.1 Thus, be warned that theorem/definition numbering in the most recent version of [Bou20]
may not always exactly match what is given here (but sections should stay the same).

An important note about [Bou20]: They structure their textbook by first defining and proving
everything for embedded submanifolds (manifolds that are subsets of a Euclidean space). It isn’t
until Chapter 8 that they go back and define things more generally. As embedded submanifolds
are much simpler to work with and make up most applications, this write-up focuses on them
nearly exclusively. When it makes sense to do so though I will try to provide intuition about how
definitions generalize beyond the embedded case, since all of the generalizations are very natural
and not something to be afraid of.

1.1 Running examples

We will use the following optimization problem as a running example:

min
y∈M0

f(y)

where

M0 = {y ∈ Rd | h(y) = 0}.

Here f : M0 → R and h : Rd → Rm. We let hi : Rd → R denote the ith component function of
h for i ∈ [m]. The properties of this kind of manifold (i.e., a manifold defined by the zero set of
a function h) are covered in “Section 7.7: Manifolds defined by h(x) = 0” in [Bou20], so we will
borrow heavily from that section in examples.

To illustrate the particularization of a manifold defined by the zero set of a function to an applica-
tion, we will use the Burer-Monteiro optimization problem:

min
Y ∈Mp

〈
C, Y Y T

〉
where

Mp = {Y ∈ Rn×p | A (Y Y T) = b}

Here A : Sn×n → Rm is linear, C ∈ Sn×n, and b ∈ Rm. We can break A into coordinate functions
via A1, . . . , Am ∈ Sn×n by letting A (Y Y T)i =

〈
Ai, Y Y

T
〉
. The Burer-Monteiro problem can be

viewed as a particularization of the more general problem above by setting f(Y) =
〈
C, Y Y T

〉
and

h(Y) = A (Y Y T) − b, or equivalently, hi(Y) =
〈
Ai, Y Y

T
〉
− bi. We define f(Y) and h(Y) in this

way, where the case of Y makes it clear whether we are referring to the more general case or the
Burer-Monteiro problem.

1You can see the compilation date on the first page of the PDF of the textbook.

2

1.2 Notation

Sn×n denotes the space of n × n symmetric matrices. We use ∇f,∇2f to denote the Euclidean
gradient and Euclidean Hessian respectively,2 whereas gradf,Hessf denote the Riemannian gradient
and Riemannian Hessian. We typically use 〈·, ·〉 to denote the inner product, but A • B may be
used as well on occasion to denote the trace inner product between matrices (A and B in this case).
Ip denotes the p× p identity matrix. M is used to denote a general or unspecified manifold.

1.3 Terminology

[Bou20] is careful to use the term “embedded submanifold” when they specifically mean a subman-
ifold of a linear space, as opposed to a submanifold of a more general manifold (see Section 8.14 in
that reference for the latter). Unfortunately these notes may not always adhere to that convention,
although generally when we say “submanifold” we mean an embedded submanifold in particular.
When in doubt, we advise referring to [Bou20].

2 First-order geometry

In this section we build up to defining the Riemannian gradient. First, it is necessary to define the
differential of a function between linear spaces. Later we will extend this definition to a function
between manifolds.

Definition 2.1 (Differential of a function between linear spaces) Let F : Rd → Rd′ be smooth
(infinitely differentiable). The differential3 of F at x is the linear map DF (x) : Rd → Rd′ defined
as:

DF (x)[v] = lim
t→0

F (x+ tv)− F (x)

t
=

d

dt
F (x+ tv)

∣∣∣∣
t=0

.

Intuitively, just think of d′ ← 1, in which case the differential eats a vector v and spits out the
directional derivative of F in the direction v. Thus, it is just the linear map defined by ∇F (x).
More generally, the differential tells you “how F changes” as you start at x and move along v.
(Specifically, it is the total derivative or equivalently the Jacobian viewed as a linear map.) As we
will see, this intuition generalizes to the definition of the differential of a map between manifolds.

We can already define what a smooth embedded submanifold (of a linear space) is:

Definition 2.2 (Smooth embedded submanifold of a linear space) Let M be a subset of
Rd. M is a smooth embedded submanifold4 of Rd if either:

2Technically this isn’t necessary since the Euclidean derivatives coincide with the Riemannian ones in linear
spaces, but we will do it for illustrative purposes. [Bou20] uses gradf,Hessf to denote the Euclidean gradient and
Euclidean Hessian because ∇ is used as the symbol for a connection on a manifold. However, these notes only briefly
cover connections, and I think the clarity obtained by using the usual ∇ for the Euclidean derivatives outweighs the
potential confusion arising from it also being the symbol for a connection.

3(3.12) in [Bou20].
4Definition 3.6 in [Bou20]. I should mention that Boumal also includes a rather nice illustration to accompany

this definition on the same page.

3

https://en.wikipedia.org/wiki/Total_derivative

1. M is an open subset of Rd, in which case it is called an open submanifold.

2. For a fixed integer k ≥ 1 and for each x ∈M there exists a neighborhood U of x in Rd and a
smooth function h : U → Rk such that

(a) If y ∈ U , then h(y) = 0 if and only if y ∈M; and

(b) rankDh(x) = k. (In other words, Dh(x) is full rank.)

h is called a local defining function for M at x.

For now on we may drop the word “smooth,” but know that when we refer to an “embedded
submanifold,” we really always mean a smooth embedded submanifold. (The same omission is
made in [Bou20].)

Example 2.3 (M0 is a smooth embedded submanifold if LICQ holds) In this case the whole
manifold is defined by a single defining function: h. Condition (a) under Definition 2.2 is trivially
satisfied. As for Condition (b), we derive

Dh(y)[v] = (〈∇h1(y), v〉 , . . . , 〈∇hm(y), v〉)

Then Dh(Y) is full rank if and only if ∇h1(y), . . .∇hm(y) are linearly independent. In other
words, if ∇h1(y), . . .∇hm(y) are linearly independent at all y ∈ Mp, then M0 is indeed a smooth
embedded submanifold. Note that this is equivalent to the constraint qualification LICQ holding at
every point. Or using the nonlinear programming language of [LY16], it is equivalent to saying that
every y ∈M0 is a regular point. (See page 325 in that reference.)

Example 2.4 (Mp is a smooth embedded submanifold if LICQ holds) We have

Dh(Y)[V] =
(〈
∇Y (A1 • Y Y T − b1), V

〉
, . . . ,

〈
∇Y (Am • Y Y T − bm), V

〉)
= 2 (〈A1Y, V 〉 , . . . , 〈AmY, V 〉)

Then Dh(Y) is full rank if and only if A1Y, . . . AmY are linearly independent. In other words,
if A1Y, . . . AmY are linearly independent at all Y ∈ Mp, then Mp is indeed a smooth embedded
submanifold.

Regarding Definition 2.2: It turns out that it is necessary for Dh(x) to be full rank on x—it is not
sufficient for Dh(x) to just have constant rank at all x ∈Mp. However, it is sufficient for Dh(x) to
have constant rank if it has constant rank not just on the zero set of h but on a neighborhood of the
zero set as well.5 This is exactly Case (b) in Assumption 1.1 in [BVB18]! (Case (a) in Assumption
1.1 is of course just Condition (b) in Definition 2.2.) This is all to say that the manifold approach
can give you a way to deal with “redundant constraints” which the usual nonlinear programming
approach cannot (as far as we know).

Finally, it is also worth noting that Condition (b) in Definition 2.2 can be shown to be equivalent
to Definition 1 in [WW20]. This is to say that everything here is standard even if it might appear
in slightly different forms in the literature.

5See Sections 3.10 and 8.14 in [Bou20].

4

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Regularity_conditions_(or_constraint_qualifications)

Definition 2.5 (Velocity of a curve) Let c : I ⊆ R → Rd be a curve. Its velocity6 at time t is

c′(t) =
d

dt
c(t). (This is just the ordinary Euclidean derivative.)

Definition 2.6 (Tangent space, tangent vector) LetM be a smooth embedded submanifold of
Rd. For all x ∈M, define

TxM = {c′(0) | c : I ⊆ R→M is smooth around 0 and c(0) = x}.

In other words, v ∈ TxM if and only if there exists a smooth curve on M passing through x with
velocity v.7 TxM is called the tangent space to M at x. v ∈ TxM is called a tangent vector to M
at x.8

It can be shown that the tangent space is a linear space (aka a vector space).

The fact that the tangent space is a linear space is key because it allows us to easily extend many
definitions from Euclidean spaces to manifolds.

Theorem 2.7 (Expression for the tangent space of a smooth embedded submanifold) Let
M ⊆ Rd be an embedded submanifold. Then for x ∈ M, if M is an open submanifold (first case
in Definition 2.2), then TxM = Rd. Otherwise, TxM = ker Dh(x) where h is any local defining
function at x.9

Note that this is exactly the definition of the “tangent plane” given in the nonlinear programming
textbook [LY16]—see page 325! Thus, we see that notions in smooth manifold optimization (smooth
embedded submanifold, tangent space) reduce to notions in nonlinear programming (LICQ, tangent
plane), although the manifold approach is more general and gives us better geometric intuition.

Example 2.8 (Tangent space to M0) Recall from Example 2.3 that we have

Dh(y)[v] = (〈∇h1(y), v〉 , . . . , 〈∇hm(y), v〉)

Theorem 2.7 instantly gives

TyM0 =
{
v̇ ∈ Rd | 〈∇hi(y), v̇〉 = 0 for i ∈ [m]

}
.

Example 2.9 (Tangent space to Mp) Recall from Example 2.4 that we have

Dh(Y)[V] = 2 (〈A1Y, V 〉 , . . . , 〈AmY, V 〉) .

Theorem 2.7 instantly gives

TYMp =
{
V̇ ∈ Rn×p |

〈
AiY, V̇

〉
= 0 for i ∈ [m]

}
.

As a check, note that this is exactly how they define the tangent space in [BVB18] (Lemma 2.1).
It is also exactly how the tangent space is defined in [WW20] (page 5), although they express it in
a more complicated way.

6(3.12) in [Bou20].
7Definition 3.7 in [Bou20].
8Definition 3.10 in [Bou20].
9Theorem 3.8 in [Bou20].

5

Definition 2.10 (Normal space) LetM⊆ Rd be an embedded submanifold. The normal space10

at x, denoted NxM, is simply the orthogonal complement of TxM in Rd.

Example 2.11 (Normal space to M0) Referencing Example 2.8, it is easy to see that

NyM0 = span{∇h1(y), . . . ,∇hm(y)}.

Example 2.12 (Normal space to Mp) Referencing Example 2.9, it is easy to see that

NYMp = span{A1Y, . . . , AmY }.

Definition 2.13 (Dimension of a manifold) The dimension of a manifold M ⊆ Rd, denoted
dimM, is just the dimension of its tangent space.11 Note that the tangent space is linear (aka a
vector space) and the dimension of TxM does not depend on x, so this is well-defined. In particular,
this means that dimM = d if M is an open embedded submanifold, and dimM = dim ker Dh(x) =
d− rankDh(x) otherwise (due to Theorem 2.7).

Example 2.14 (Dimension of M0) Remember that we need Dh(y) to be full rank for M0 to be
a smooth embedded submanifold in the first place (see Example 2.3). Since Dh(y) : Rd → Rm, we
have that rankDh(y) = m. So dimM0 = d−m.

Example 2.15 (Dimension of Mp) It immediately follows from Example 2.14 that dimMp =
np−m.

As a check, this is confirmed by [BVB18] (Proposition 1.2) and [WW20] (page 5). (Although
[BVB18] makes things slightly more complicated because they allow Dh(Y) to not be full rank as
long as it has constant rank on a neighborhood of Mp [see the discussion of this below Example 2.4
above]. This affects dimMp, although it still just ends up being d− rankDh(x).)

We now define what it means for a map between two manifolds to be smooth, which we will do by
smoothly extending the function in question from the manifold to the linear embedding space (also
called the ambient space). In fact, the notion of a smooth extension will end up being the more
important part of the definition below for our purposes!

Definition 2.16 (Smooth map between manifolds, smooth extension) Let M ⊆ Rd and
M′ ⊆ Rd′ be embedded submanifolds. A map F : M → M′ is smooth if there exists a function
F : U → Rd′ which is smooth (in the usual sense, aka infinitely differentiable) on a neighborhood
U of M in Rd. Furthermore, this map F must be such that F and F coincide on M∩ U , i.e.,
F (y) = F (y) for all y ∈ M ∩ U . (Equivalently, F is the restriction of F to M: F = F

∣∣
M.) We

call F a smooth extension of F .12

To gain intuition for the above definition, it is best to think of M′ as just being R. (Note that R
is an open embedded submanifold per Definition 2.2.)

10Defined in the paragraph above (5.15) in [Bou20].
11Theorem 3.10 in [Bou20].
12Proposition 3.24 in [Bou20]. Note that Boumal first defines what it means for F to be smooth at a point in

Definition 3.23, but I have omitted this for simplicity.

6

Example 2.17 (Smooth extension of our objective function on Mp) Clearly a smooth ex-
tension of f :Mp → R defined as f(Y) =

〈
C, Y Y T

〉
is f : Rnp → R defined as f(Y) =

〈
C, Y Y T

〉
.

In other words, the only thing that changes when we take a smooth extension is the domain! Thus,
we can really view ourselves as starting with a smooth extension in this application, and then ob-
taining the objective function on the manifold by restricting the original function to the manifold.

We are now ready to extend Definition 2.1 to manifolds.

Definition 2.18 (Differential of a map between manifolds) The differential of F : M ⊆
Rd →M′ ⊆ Rd′ at x is a linear operator DF (x) : TxM→ TF (x)M′ defined by

DF (x)[v] =
d

dt
F (c(t))

∣∣∣∣
t=0

,

where c is a smooth curve on M passing through x at t = 0 with velocity v.13

Intuitively, DF (x) is just a map which tells you how F changes as you start at x and move along
the manifold M in the direction v ∈ TxM. Although we can’t actually move along v—we have to
move along a curve with velocity v called c(t). Then, F (c(t)) is just a curve on M, and we would
like to return how F changes as we move along this curve. Well, let’s just return the velocity of
this curve at t = 0—this is exactly DF (x)[v].

It is worth mentioning that the differential of Theorem 2.18 satisfies all of the properties we would
expect it to satisfy (the chain rule, the product rule, etc.). See Section 4.7 in [Bou20] for details.

The next theorem provides even more intuition:

Theorem 2.19 (Differential of a map between manifolds via a smooth extension) With
the same notation as in 2.18, let F : U ⊆ Rd → Rd′ be a smooth extension of F . (We know such
an extension exists since F is smooth.) Then DF (x) is the restriction of DF (x) to TxM, i.e.,

DF (x) = DF (x)
∣∣
TxM .

Note that DF (x) is a differential between linear spaces, so it is defined via Definition 2.1.14

In a sense, this says that we could equivalently define the differential between manifolds via smooth
extensions. This also helps us gain much better intuition as to what DF (x) is if F is a map
between manifolds. Let d′ ← 1 so that F :M ⊆ Rd →M′ ⊆ R. Let F be a smooth extension of
F . Recall from the discussion below Definition 2.1 that DF (x) eats a vector v and spits out the
directional derivative of F in the direction v. Then, Theorem 2.19 basically says that DF (x) does
the exact same thing, except you are only allowed to feed in vectors in TxM. This restriction makes
sense because intuitively, we are only allowed to move in directions that are in TxM, so DF (x) is
essentially a fancy way of forcing us to only pay attention to how F changes in directions which we
actually care about!

13Definition 3.27 in [Bou20]. Once again, there is an accompanying illustration which is excellent!
14Proposition 3.28 in [Bou20].

7

Example 2.20 (Differential of the objective function over Mp) Define f as in Example 2.17.
Using Definition 2.1 (and particularly the discussion below it), we have that for Y ∈ Rnp, Df(Y)[V] :
Rnp → R is defined via

Df(Y)[V] =
〈
∇Y f(Y), V

〉
= 2 〈CY, V 〉

Then using Theorem 2.19, we have that Df(Y) : TYMp → R is

Df(Y) = 2 〈CY, V 〉|TYMp

where TYMp is defined in Example 2.9. We will obtain a more explicit expression for Df(Y) after
we define the Riemannian gradient!

We need only a few more definitions before we can define the Riemannian gradient!

Definition 2.21 (Tangent bundle) The tangent bundle15 TM of a manifold M is the disjoint
union of the tangent spaces of M:

TM = {(x, v) | x ∈M and v ∈ TxM}.

Following the conventions of [Bou20], we may abuse notation at times and conflate v and (x, v)
for a tangent vector v ∈ TxM. We may write (x, v) ∈ TxM, or even v ∈ TM if it is clear from
context that the foot or base of v is x.

Theorem 2.22 If M is an embedded submanifold of Rd, then the tangent bundle TM is an em-
bedded submanifold of Rd×Rd.16 (See Appendix B for more information about product manifolds.)

We don’t really need Theorem 2.22 in these notes beyond one use case: In multiple places (e.g.,
Definition 2.23, Definition 4.1), we will need to introduce a map from or to TM, and we will want
such a map to be smooth per Definition 2.16. Since Definition 2.16 only applies to maps between
embedded submanifolds, we need to recognize that TM is itself an embedded submanifold.

Definition 2.23 (Vector field on a manifold) A vector field17 on a manifold M is a map V :
M → TM such that V (x) ∈ TxM for all x ∈ M. If V is a smooth map, we say it is a smooth
vector field.

In other words, a vector field is just a formal way of assigning to each x ∈ M a tangent vector at
that point.

15Definition 3.35 in [Bou20].
16Theorem 3.36 in [Bou20].
17Definition 3.37 in [Bou20].

8

Definition 2.24 (Riemannian gradient) Let f : M → R be a smooth function on a Rieman-
nian manifold18 M. The Riemannian gradient19 of f is the vector field gradf on M uniquely
defined by the following: For all (x, v) ∈ TM,

Df(x)[v] = 〈gradf(x), v〉 ,

where Df(x) is as defined in 2.18 (or Theorem 2.19).

Note that this definition critically implies that gradf(x) ∈ TxM, i.e., it is a tangent vector.

Definition 2.25 (Orthogonal projector to the tangent space) Let M⊆ Rd be an embedded
submanifold. We denote the orthogonal projector20 from Rd to TxM as

Projx : Rd → TxM⊆ Rd.

Being a projector, Projx is a linear operator such that Projx ◦ Projx = Projx. Being orthogonal,
the matrix corresponding to Projx is symmetric.

Example 2.26 (Deriving Projy for M0) Recall from Theorem 2.7 that

TyM0 = ker Dh(y).

Also, recall that the orthogonal projector onto the kernel of a matrix A can be represented as I−A+A,
where A+ denotes the Moore-Penrose inverse of A (aka the pseudoinverse). Thus, one expression
for Projy is

Projy(V) = V −Dh(y)+[Dh(y)[v]]. (1)

We will also derive a second expression for Projy. Note that equivalently, TyMp = ker((Dh(y)T)T).

Recall that the orthogonal projector onto the kernel of the transpose of a matrix, AT , can be expressed
as I −AA+. Setting A← Dh(y)T , this gives

Projy(v) = v −Dh(y)T
[
(Dh(y)T)+[v]

]
. (2)

(I am giving both of these expressions because although (1) is simpler, Boumal actually only gives
(2) in Section 7.7 of [Bou20]. It might be because typically Dh(V)T is typically simpler to work
with, although I’m not sure.)

Example 2.27 (Deriving ProjY for Mp) Particularizing (1) or (2) to the Burer-Monteiro prob-
lem just involves plugging in what Dh(Y) is in that context—see Example 2.4.

It is worth mentioning that at first glance, neither (1) nor (2) look equivalent to the expression for
ProjY given in Lemma 2.2 in [BVB18]. Indeed, [BVB18] uses a more unorthodox method to derive
their expression for ProjY . However, their expression for ProjY can be shown to be equivalent to
(2) using these properties of the Moore-Penrose inverse.

18See Section 2.1 for what a Riemannian manifold is.
19Definition 3.50 in [Bou20].
20Definition 3.52 in [Bou20].

9

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse#Projectors
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse#Projectors
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse#Identities

And finally:

Theorem 2.28 (Connecting the Riemannian gradient and Euclidean gradient) LetM⊆
Rd be a Riemannian submanifold21 of Rd. The Riemannian gradient of f is given by

gradf(x) = Projx(∇f(x)),

where f is any smooth extension of f to a neighborhood of M in Rd.22

It is not hard to see that Theorem 2.28 follows quickly from Definition 2.24 and Theorem 2.19.

Example 2.29 (Riemannian gradient in the optimization problem over M0) Let f : Rd →
R denote a smooth extension of f :M0 → R. Theorem 2.28 yields

gradf(y) = ∇f(y)−Dh(y)T
[
(Dh(y)T)+[∇f(y)]

]
To really see what is going on here, it is helpful to reexpress this as follows:

gradf(y) = ∇f(y)−
m∑
i=1

λi(y)∇hi(y) (3)

where

λ(y) := (Dh(y)T)+[∇f(y)].

(Recall from Example 2.3 that the ith column of Dh(y)T is simply ∇hi(y).)

How should we think of the “multipliers” that make up λ(Y)? Well, remember how we derived (3)
in the first place via Theorem 2.28—we took ∇f(Y) and deleted its normal component. Thus, you
should just think of the λi(y)’s as being the multipliers which delete the component of ∇f(y) that
lies in

NyM0 = span{∇h1(y), . . . ,∇hm(y)}.

Indeed, this is exactly what the pseudoinverse does. And this makes complete sense because gradf(Y)
must be a tangent vector by definition, so the λi(y)’s couldn’t be anything else.

It is also basically immediately apparent at this point from (3) that the first-order criticality condition
from nonlinear programming is equivalent to gradf(y) = 0. More on this later.

Example 2.30 (Riemannian gradient in the Burer-Monteiro problem) Define f as in Ex-
ample 2.17. Theorem 2.28 yields

gradf(Y) = ∇f(Y)−Dh(Y)T
[
(Dh(Y)T)+[∇f(Y)]

]
= 2CY −Dh(Y)T

[
(Dh(Y)T)+[2CY]

]
.

21See Section 2.1 for what a Riemannian manifold is.
22Proposition 3.53 in [Bou20].

10

This is not particularly informative, but following the same path as in Example 2.29, we can reex-
press this as

gradf(Y) = 2

[
CY −

m∑
i=1

λi(Y)AiY

]

= 2

[(
C −

m∑
i=1

λi(Y)Ai

)
Y

]

where

λ(Y) := (Dh(Y)T)+[2CY].

As a sanity check, this is exactly the expression derived in [BVB18]—see (2.6) and (2.5) in that
paper. Although note that due to their unorthodox expression for ProjY (see the discussion of this
in Example 2.27), their expression for λ(Y) (which they call µ) is different (though equivalent).

2.1 First-order geometry: material not covered

This section covered a large portion of Chapter 3 from [Bou20] as well as parts of Section 7.7
from [Bou20] through the examples. That said, we still made some omissions. Probably the
most important omission has to do with the notation of a “Riemannian submanifold,” which was
mentioned in several places (e.g., Definition 2.24, Theorem 2.28). Basically, [Bou20] stresses that
you can equip manifolds with different inner products. More accurately, you equip each tangent
space with an inner product (since tangent spaces are vector spaces), and the inner product on
TxM can even depend on x.23 If the inner product on TxM varies smoothly with x, then we
call it a Riemannian metric.24 A manifold equipped with a Riemannian metric is a Riemannian
submanifold.25 It turns out that if you take an embedded submanifold of Rd and define the inner
products on the tangent spaces of the embedded submanifold to just be the restrictions of an inner
product on Rd to those spaces, you obtain a Riemannian submanifold. We refer to this particular
type of Riemannian submanifold, where the inner product on TxM doesn’t vary with x and is
inherited from the inner product on Rd, a Riemannian submanifold of Rd.26 Because, as noted
in [Bou20], this is the most common type of Riemannian submanifold in practice and it is very
natural to work with, we are only covering it briefly here.

It is important to make clear that in these notes, if a theorem/definition in [Bou20] involves a
Riemannian submanifold, our “version” of the theorem/definition will basically always additionally
assume that it is a Riemannian submanifold of Rd. This way we don’t need to add the point where
you are taking the inner product as a subscript to each inner product. For example, compare
Definition 2.24 to Definition 3.50 in [Bou20]: The latter writes 〈v, gradf(x)〉x whereas we omit the
subscript x. Once again, we do this because Riemannian submanifolds of linear spaces are the most
common use case, and it also helps to think about theorems in terms of the inner products we are
all used to (i.e., inner products inherited from linear spaces).

23Definition 3.43 in [Bou20].
24Definition 3.44 in [Bou20].
25Definition 3.45 in [Bou20].
26Definition 3.47 in [Bou20].

11

We also didn’t cover retractions (Section 3.6 in [Bou20])—this will wait until a later section of these
notes.

2.2 First-order geometry: extending beyond the embedded case

To be done.

3 Second-order geometry

In this section we build up to defining the Riemannian Hessian, although we will not end up defining
it in full generality. This is due to the fact that the general definition takes a lot of work—you need
to build up certain mathematical objects which satisfy nice properties and then prove uniqueness,
etc. As expected however, working with the Riemannian Hessian on embedded submanifolds is
much easier than in the general case, so we rarely need this machinery in practice. Still, we have
sought to give a flavor of how it is actually defined.

Toward doing this, it will be helpful to remember how we should think about the regular Euclidean
Hessian, ∇2f(x) for f : Rd → R. It can be thought of as an n × n matrix of second-order partial
derivatives, but just as it is typically better to think of ∇f(x) in terms of the linear map it induces,
it is better to think of ∇2f(x) as a linear map. Indeed, we can express ∇2f(x) as a linear map,
∇2f(x) : Rd → Rd, where ∇2f(x)[v] is precisely the directional derivative of ∇f(x) along v. (Of
course, behind the scenes ∇2f(x)[v] just corresponds to multiplying the n× n matrix “version” of
∇2f(x) by v ∈ Rd. For a more in-depth discussion of all of this, see the beginning of Chapter 5 in
[Bou20].) Likewise, the Riemannian Hessian will end up being a linear map, Hessf(x) : TxM →
TxM, where Hessf(x)[v] should somehow be the directional derivative (whatever that means for
manifolds) of the Riemannian gradient gradf(x) along v.

A good first try for defining the Riemannian Hessian is to take the differential, per Definition 2.18,
of the vector field gradf(x). After all, remember, per Definitions 2.24 and 2.23, that gradf(x)
is really a map: gradf(x) : M → TM. In other words, it is a map between two embedded
submanifolds,27 and Definition 2.18 tells us exactly how to take the differential of a map between
manifolds. However, there is a problem. Note that D(gradf)(x) : TxM → Tgradf(x)TM per
Definition 2.18. So if we define Hessf(x) as D(gradf)(x), the domain will indeed be TxM as
desired, but it is not clear that the codomain, Tgradf(x)TM, is equivalent to TxM, the latter being
what we want the codomain to be. In fact they aren’t equivalent, as proven through a simple
example in Section 5.1 of [Bou20].

So to recap, we have a vector field gradf(x), and we want to take the derivative of it in a way such
that the codomain is TxM. The differential does not do this, so we need a new kind of derivative,
which we will call a connection.

Definition 3.1 (Connection, informal) A connection on a manifold M is an operator

∇ : TM×X (M)→ TM,

27TM is indeed an embedded submanifold—see Theorem 3.36 in [Bou20].

12

where X (M) is the set of all smooth vector fields on M.28 So that we can talk about specific inputs
and outputs, we will say that it maps (u, V) ∈ TM×X (M) to ∇uV ∈ TM. It must satisfy the
property that if u ∈ TxM, then ∇uV ∈ TxM—in other words, the tangent vector that it spits
out must lie in the same tangent space as the tangent vector given in the input. Furthermore, a
connection needs to satisfy a list of other properties (smoothness, linearity, etc.) so that it really
behaves like a derivative. See Definition 5.1 in [Bou20] for the full definition of a connection, which
includes a list of these properties.

So we have a notion of the derivative of a vector field which enforces our rule that it should map
vectors in TxM to vectors in TxM. Indeed, for a vector field V over a manifoldM, this is obtained
by fixing the second argument in the connection to be V , so that for a given x ∈ M we obtain a
map from TxM to TxM. We are only a few steps away from being able to define the Riemannian
Hessian. It turns out that the list of properties a connection must satisfy (see Definition 5.1 in
[Bou20]) is not expansive enough for our purposes. In particular, we can only define the Riemannian
Hessian (and the Riemannian gradient for that matter) after introducing an inner product which
makes our manifold into a Riemannian manifold.29 We would like the connection we use to define
the Riemannian Hessian to play nicely with this inner product/metric. This is the subject of the
next theorem:

Theorem 3.2 (Fundamental theorem of Riemannian geometry, informal) On a Rieman-
nian manifold M, there exists a unique connection which “plays nicely” with the metric on your
manifold. This connection is called the Levi-Civita or Riemannian connection. See Theorem 5.5
in [Bou20] for a formal statement.

Now we can define the Riemannian Hessian:

Definition 3.3 (Riemannian Hessian) Let M be a Riemannian manifold with its Riemannian
connection ∇. Let f :M→ R be a smooth function. The Riemannian Hessian30 of f at x ∈M is
a linear operator Hessf(x) : TxM→ TxM defined as follows

Hessf(x)[u] = ∇ugradf.

Recall from Definition 3.1 that ∇ugradf denotes the result you get from feeding u ∈ TxM and
gradf ∈ X (M) into the connection ∇ as its input.

The following intuitively had to be true, but let’s make it explicit:

Theorem 3.4 (The Riemannian Hessian is self-adjoint) The Riemannian Hessian is self-
adjoint.31 In particular, when we are working with real numbers, the matrix corresponding to
the Riemannian Hessian is symmetric.

28[Bou20] uses similar notation for the set of all vector fields on M—see Definition 3.37.
29See Section 2.1.
30Definition 5.13 in [Bou20].
31Proposition 5.16 in [Bou20].

13

Now we begin the process of simplifying all we have done above for the case whereM is a Rieman-
nian submanifold of a Euclidean space. First, we obtain an explicit expression for the Riemannian
connection:

Theorem 3.5 (Riemannian connection of a Riemannian submanifold of Rd) Let M be a
Riemannian submanifold of a Euclidean space (i.e., Rd). Then the Riemannian connection is
precisely32

∇uV = Projx(DV (x)[u]),

where V is any smooth extension of V . (Here V is a smooth vector field on M and u ∈ TM.)

This is incredibly intuitive based on the discussion we had toward the beginning of this chapter.
Remember that the whole problem with using the differential to obtain the derivative of a vector
field was that the result might not be in TxM. Well, Theorem 3.5 is basically saying that the
“correct” way to fix this for Riemannian submanifolds of Euclidean spaces is to just force the
output to lie in TxM through orthogonal projection!

Definition 3.3 and Theorem 3.5 combine to instantly yield the following corollary:

Corollary 3.6 (Riemannian Hessian on a Riemannian submanifold of Rd) LetM be a Rie-
mannian submanifold of the Euclidean space Rd. Let f : M → R be a smooth function. Let
gradf : Rd → Rd denote a smooth extension of gradf . Then33

Hessf(x)[u] = Projx(D(gradf)(x)[u]).

In other words, for a Riemannian submanifold of Rd, you can compute the Riemannian Hessian by
differentiating in the classical sense (i.e., using Definition 2.1) a smooth extension of the Riemannian
gradient vector field, and then orthogonally projecting the result to TxM.

Note that D(gradf)(x)[u] is not equivalent to ∇2f(x)[u], meaning Corollary 3.6 is not saying
that Hessf(x)[u] is just the projection of the Euclidean Hessian to TxM, aka Projx(∇2f(x)[u]).
In particular, D(gradf)(x)[u] and ∇2f(x)[u] are not equivalent because gradf and ∇f are not
equivalent. The latter are not equivalent because they need not coincide on the manifoldM itself.
Indeed, by definition gradf and gradf must coincide on M, and we know from Theorem 3.5 that
gradf and ∇f need not coincide on M. (After all, what then would even be the point of defining
the Riemannian gradient, as it would always be equivalent to the Euclidean gradient?)

However, it is still possible to directly relate the Riemannian Hessian to the Euclidean Hessian. We
only provide an informal statement here:

Theorem 3.7 (Relating the Riemannian Hessian to the Euclidean Hessian, informal) Let
M be a Riemannian submanifold of Rd. Let f : M → R be smooth with smooth extension
f : Rd → R. The Riemannian Hessian of f is given by:

Hessf(x)[u] = Projx(∇2f(x)[u]) + correction(Proj⊥x (∇f(x))),

32Theorem 5.8 in [Bou20].
33Corollary 5.14 in [Bou20].

14

where Proj⊥x = Id − Projx denotes the orthogonal projector onto the normal space NxM, and
correction : Rd → TxM is some “correctional function” which we do not specify here. (Id is the
identity map.)

See Corollary 5.17 in [Bou20] for the formal statement.

In other words, this says that for Riemannian submanifolds of Euclidean spaces, the Riemannian
Hessian is the projected Euclidean Hessian plus a correctional term which depends only on the
normal part of the Euclidean gradient.

Example 3.8 (Riemannian Hessian in the optimization problem over M0) Using the no-
tation of Example 2.29, recall that

gradf(y) = ∇f(y)−
m∑
i=1

λi(y)∇hi(y) (4)

where

λ(y) := (Dh(y)T)+[∇f(y)]. (5)

We now wish to apply Corollary 3.6 to obtain an expression for Hessf(x). To do so we need to
obtain a smooth extension of gradf , which we will denote gradf . Well, the smooth extensions of
∇f(y) and ∇hi(y) can just be ∇f(y) and ∇hi(y) respectively.34 The only question remaining is
how to smoothly extend λ(y). Well, from (5) we can view λ(y) as a smooth function on the open
subset of Rd consisting of all points y where Dh(y) has full rank. This is an open neighborhood of
M0, so we have our smooth extension. In other words,

gradf(x) = ∇f(y)−
m∑
i=1

λi(y)∇hi(y), (6)

where we have replaced ∇f(y), λi(y),∇hi(y) with smooth extensions of themselves.

Then we can differentiate (6) normally (i.e., using Definition 2.1) to get

D(gradf(x))(x)[u] = ∇2f(y)[u]−
m∑
i=1

Dλi(x)[u] · ∇hi(x)−
m∑
i=1

λi(y)∇2hi(y)[u].

Applying Corollary 3.6 yields

Hessf(y)[u] = Projx

(
∇2f(y)[u]−

m∑
i=1

Dλi(x)[u] · ∇hi(x)−
m∑
i=1

λi(y)∇2hi(y)[u]

)

= Projx

(
∇2f(y)[u]−

m∑
i=1

λi(y)∇2hi(y)[u]

)
, (7)

34Formally, we are extending the domain of ∇f(y) and ∇hi(y) as they appear in (4) from M to Rd. Although in
other sense, the ∇f(y) and ∇hi(y) which appear in (4) are really restrictions of the “original” ∇f(y) and ∇hi(y)
from Rd to M, so it is more like we are lifting this restriction.

15

where the second equality follows because

Projx

(
m∑
i=1

Dλi(x)[u] · ∇hi(x)

)
= 0

since each ∇hi(x) ∈ NyM (see Example 2.11).

Note that (7) looks super similar to the second-order criticality condition in nonlinear programming
(in other words, the Hessian of the Lagrangian)—more on this later.

Example 3.9 (Riemannian Hessian in the Burer-Monteiro problem) Applying (7), we ob-
tain

Hessf(Y)[U] = 2 · ProjY

(
CU −

m∑
i=1

λi(Y)AiU

)

= 2 · ProjY

([
C −

m∑
i=1

λi(Y)Ai

]
U

)
.

where λ(Y) is as in Example 2.30 and ProjY is as in Example 2.27.

As a sanity check, this is precisely what the authors of [BVB18] derive—see (2.7) in that paper.

3.1 Second-order geometry: material not covered

We went over much of the first half of Chapter 5 of [Bou20] in this section. Obviously some for-
mality regarding connections was left out, but these details aren’t really necessary for working with
Riemannian submanifolds of Euclidean spaces due to Corollary 3.6 and Theorem 3.7. It is worth
mentioning that Definition 3.1 (and the corresponding Definition 5.1 in [Bou20]) is not actually
the standard definition of the connection. However, it is equivalent to the standard definition
(Definition 5.19 in [Bou20]), as proven in Section 5.6 of [Bou20]. Boumal chooses to start with a
nonstandard definition because it makes it easier to define the Riemannian Hessian.

The second half of Chapter 5 in [Bou20] contains other important material: differentiating vector
fields along curves, acceleration, geodesics, second-order Taylor expansions on curves, second-order
retractions, etc. We will see some of this later in these notes.

Finally, we followed Section 7.7 of [Bou20] in Example 3.8. It is worth noting that in Section 7.8 of
[Bou20], an alternative derivation of the Riemannian Hessian for this particular problem is given.
The latter approach mirrors the derivation of the second-order necessary condition in nonlinear
programming (see page 333 in [LY16]), and as noted in [Bou20], can be extended more easily to
higher-order derivatives.

3.2 Second-order geometry: extending beyond the embedded case

To be done.

16

4 Retractions, Taylor expansions, and optimality conditions

We now discuss the tool used to move along manifolds in a particular direction. Formally, given
a point x ∈ M and a tangent vector v ∈ TxM, starting at x and moving in the direction v
corresponds to picking a curve c : I ⊆ R → M such that c(0) = x and c′(0) = v, and then
moving along c. There may be many such curves. A retraction picks a particular curve for each
(x, v) ∈ TM in a smooth way.

Definition 4.1 (Retraction) A retraction35 on M is a smooth map R : TM → M with the
following properties. For each x ∈M, let Rx : TxM→M denote the restriction of R at x, so that
Rx(v) = R(x, v). Then

1. Rx(0) = x, and

2. DRx(0) : TxM→ TxM is the identity map: DRx(0)[v] = v.

Equivalently, each curve c(t) = Rx(tv) satisfies c(0) = x and c′(0) = v.

First of all, note that DRx(0) is indeed a map from TxM to TxM per Definition 2.18. In particular,
the domain is TxM because the tangent space to TxM is TxM, due to the fact that TxM is a
linear space.

Next, let us interpret the conditions of Definition 4.1. The first condition is easy to interpret, but
what of DRx(0)[v] = v? Well, it is helpful to go back to Definition 2.18 and the text below it.
Remember that DRx(0)[v] intuitively tells us how Rx changes when we start with 0 ∈ TxM as
the input and push the input in the direction v. So the fact that DRx(0)[v] = v says that if we
push the input along v, the output (which starts at Rx(0)) had better also be pushed along v. (Or
more precisely, e.g., the curve Rx(tv) : R→M better have velocity v when t = 0, which is exactly
the text at the bottom of Definition 4.1.) In other words, the DRx(0)[v] = v condition intuitively
forces the retraction to actually “send us in the direction we specify.”

Example 4.2 (Retractions on a sphere) The following are natural retractions on the sphere
Sn−1:

Rx(v) =
x+ v

||x+ v||2
=

x+ v√
1 + ||v||2

and

Rx(v) = cos(||v||)x+
sin(||v||)
||v||

v. (8)

The former is simply projection. The latter has you move along the great circle traced out by v.
See Example 3.40 in [Bou20] for more details.

35Definition 3.41 in [Bou20]

17

Example 4.3 (Retraction on M0) A natural retraction on M0 is the metric projection:

Rx(v) = argmin
y∈M0

||x+ v − y||2. (9)

In other words, we return the point on the manifold closest to x+ v. This is well-defined for small
v, but Rx(v) may not be uniquely defined for larger v. It may also be difficult to compute this
retraction.

Example 4.4 (Retractions on Mp) As far as I know, the particularization of (9) to Mp does
not yield a nice expression in general.36 However, for particular instantiations of Mp, (9) might
yield a nice expression (which I’m guessing is why manifold-based algorithms for optimization on
Mp seem to be limited to these special cases) or other nice retractions might exist. See [Bou16]
and [JBAS10] for examples.

The following object is key to the general method of designing manifold optimization algorithms:

Definition 4.5 (Pullback) Let f : M → R be smooth and let R : TM → M be a retraction
on M. The composition f ◦ R : TM → R is called the pullback37 of f to the tangent spaces. In
particular, f ◦Rx : TxM→ R is the pullback of f to the tangent space at x. Importantly, this is a
smooth function on a linear space.

Since typical optimization algorithms on manifolds are retraction based, meaning they iterate

xk+1 = Rxk
(sk)

for some step sk, the change in the cost function value from one iterate (xk) to the next (xk+1) can
be understood through the pullback f ◦Rxk

. In other words, we want to pick sk ∈ Txk
M so as to

minimize f ◦Rxk
. However, f ◦Rxk

may in general be very complicated, so we seek to approximate
it using Taylor expansions. We then minimize the approximation instead of f ◦ Rxk

itself.38 This
is the basis for both Riemannian gradient descent and Riemannian Newton’s method—more on
this later. First we need to write out the relevant Taylor expansions, which will also help us derive
optimality conditions.

Theorem 4.6 (First-order Taylor expansion on curves) Let M be a Riemannian submani-
fold of Rd,39 and let f :M→ R be smooth. Let c : I →M be a smooth curve on M with c(0) = x
and c′(0) = v, where I is an open interval of R around t = 0. Then40

f(c(t)) = f(x) + t 〈gradf(x), v〉+O(t2).

The big O notation here is with respect to t going to 0, meaning that the residual goes to zero at
least as fast as t2 as t→ 0.

36I haven’t actually tried to compute this though. But I’m guessing this is the case since I have not seen such a
result.

37Section 4.1 in [Bou20].
38For reference, I took this discussion from Section 6.2 of [Bou20].
39See Section 2.1 for a reminder of what this means.
40Section 4.1 in [Bou20].

18

Theorem 4.7 (First-order Taylor expansion of the pullback) With the same setup as in The-
orem 4.6, suppose we additionally have a retraction R : TM→M. Then41

f(Rx(s)) = f(x) + t 〈gradf(x), s〉+O(||s||2).

The proofs of Theorems 4.6 and 4.7 are very short and simple. Theorem 4.6 is proven by a
simple application of the chain rule. Theorem 4.7 is proven by applying Theorem 4.6 to the curve
c(t) = Rx(tv) and then introducing s = tv. See Section 4.1 in [Bou20] for the details.

Theorem 4.8 (First-order necessary condition) Let f : M → R be a smooth function on a
Riemannian manifold. If x is a local minimizer of f , then gradf(x) = 0.42

Once again, the proof is simple. If gradf(x) were not zero, then the first-order Taylor expansion
reveals that f will decrease along any curve with velocity −gradf(x).

Definition 4.9 (Critical/stationary point) Given a smooth function f on a Riemannian man-
ifold M, we call x ∈M a critical point or stationary point43 of f if gradf(x) = 0.

Now we move into the second-order realm where things inevitably get more complicated:

Theorem 4.10 (Second-order Taylor expansion on curves) With the same setup as in The-
orem 4.6, we have44

f(c(t)) = f(x) + t 〈gradf(x), v〉+
t2

2
〈Hessf(x)[v], v〉+

t2

2

〈
gradf(x), c′′(0)

〉
+O(t3). (10)

Clearly this is not as clean of an expression as the first-order Taylor expansion due to the annoying
t2

2 〈gradf(x), c′′(0)〉 term (which in particular depends on c beyond just the velocity of c at t = 0).
In fact, we have not yet even defined what c′′(0) means exactly. c′(t) can be thought of as a function
which maps each t in some open interval of R containing 0 to a tangent vector at c(t). Indeed,
c′(t) ∈ Tc(t)M by the literal definition of the tangent space (Definition 2.6). More generally, c′(t)
is an example of a smooth vector field on a curve which is essentially produced by taking a curve c
and composing it with a smooth vector field. Formally:

Definition 4.11 (Smooth vector field on a curve) Given a smooth curve c : I → M (I is
open and connected in R), the map Z : I → TM is a smooth vector field on c if Z(t) is in Tc(t)M
for all t ∈ I, and if it is smooth as a map from I (an open submanifold of R) to TM.45

Just as we needed to define a new kind of derivative, the connection, in Section 3 so that the
Hessian spits out tangent vectors, we need to define a new kind of derivative to “properly” take

41Section 4.1 in [Bou20].
42Proposition 4.4 in [Bou20].
43Definition 4.5 in [Bou20].
44Section 5.9 in [Bou20].
45Definition 5.27 in [Bou20].

19

the derivative of a smooth vector field along a curve. It is called the induced covariant derivative,
and it is defined in a similar way to how the Riemannian connection (Theorem 3.2) is defined: You
basically show that there exists a unique operator which satisfies the “nice properties” which the
derivative of a vector field along a curve “should satisfy.” See Theorem 5.28 in [Bou20] for the
formal statement.

Just like for the connection, one of the most important properties of the induced covariant derivative
is that the result of applying it to a smooth vector field along a curve should produce a smooth
vector field along a curve, meaning in particular that the result is still assigning tangent vectors to
each t ∈ I and not arbitrary vectors in the linear embedding space. Furthermore, just like for the
connection (Theorem 3.5), in the cases we care about in these notes, the induced covariant derivative
just corresponds to composing the regular Euclidean derivative with an orthogonal projection onto
the tangent space. (See Proposition 5.29 in [Bou20] for a formal statement.) For this reason, the
c′′(0) in Theorem 4.10 is just the regular Euclidean derivative of c′(0) composed with an orthogonal
projection onto the tangent space. Formally,

c′′(t) := Projc(t)

(
d

dt
c′(t)

)
, (11)

where
d

dt
c′(t) is the Euclidean derivative of c′(t). In fact, c′(t) is formally called the acceleration46

of the curve c. The classical or extrinsic acceleration of c is denoted in [Bou20] (see Section 5.8) as

c̈(t) =
d2

dt2
c(t) =

d

dt
c′(t)

Then (11) is equivalent to

c′′(t) := Projc(t) (c̈(t)) , (12)

which says that for a Riemannian submanifold of Rd, the acceleration of a curve c is the tangential
part of its extrinsic acceleration in the embedding space.

This is all great, but we are still left with this ugly t2

2 〈gradf(x), c′′(0)〉 term in Theorem 4.10. Well,
fortunately it turns out that in most of the cases we care about, this term will get zeroed out. The
first case where this will happen is when we are at a stationary point, since then gradf(x) = 0.
This yields the following:

Theorem 4.12 (Second-order necessary condition) Consider a smooth function f :M→ R
defined on a Riemannian manifold M. If x is a local minimizer of f , then gradf(x) = 0 and
Hessf(x) � 0.47

The proof is simple. We already know from Theorem 4.8 that x being a local minimum implies
gradf(x) = 0, so (10) becomes

f(c(t)) = f(x) +
t2

2
〈Hessf(x)[v], v〉+O(t3). (13)

Then if Hess weren’t positive semidefinite, (13) implies that f decreases along a curve whose velocity
is an eigenvector of Hess with a negative corresponding eigenvalue.

46Definition 5.35 in [Bou20].
47Proposition 6.1 in [Bou20].

20

Definition 4.13 (Second-order critical/stationary point) Given a smooth function f on a
Riemannian manifold M, we call x ∈M a second-order critical point or a second-order stationary
point48 of f is gradf(x) = 0 and Hessf(x) � 0.

Example 4.14 (Necessary conditions for optimization over M0) We derive the criticality
conditions for optimization over M0. Combining (3) and Theorem 4.8/Definition 4.9, we have
that y ∈M0 is a first-order critical point if and only if

gradf(y) = ∇f(y)−
m∑
i=1

λi(y)∇hi(y) = 0 (14)

where

λ(y) := (Dh(y)T)+[∇f(y)].

Note that this is equivalent to the first-order nonlinear programming criticality condition with respect
to the optimization of f over M0. Indeed, we say that y is a first-order critical point with respect
to the latter problem if Dh(y) has full rank (i.e., LICQ holds) and there exists unique multipliers
ν ∈ Rm such that

∇f(y)−
m∑
i=1

νi∇hi(y) = 0

The fact that ∇h1(y), . . . ,∇hm(y) are linearly independent (see Example 2.3) implies that λ(y) = ν
at a first-order critical point.

From (7) and Theorem 4.12/Definition 4.13, we have that y ∈ M0 is a second-order critical point
if and only if (14) holds and

Projx ◦

(
∇2f(y)−

m∑
i=1

λi(y)∇2hi(y)

)
◦ Projx � 0. (15)

(Note that we can precompose (7) with Projx to get the equivalent expression (15) since the input
to the Riemannian Hessian lies in TxM anyway by the definition of the Riemannian Hessian.
We follow [Bou20]—see (7.79) in that reference—and make this change since (15) is “pleasantly
symmetric.”)

It is immediately apparent that this is equivalent to the second-order criticality condition in nonlinear
programming. See Exercise 7.8 in [Bou20] for the details.

Example 4.15 (Necessary conditions for the Burer-Monteiro problem) Combining Exam-
ple 2.30 with Theorem 4.8/Definition 4.9, we have that Y ∈Mp is a first-order critical point if and
only if

gradf(Y) = 2

[(
C −

m∑
i=1

λi(Y)Ai

)
Y

]
= 0 (16)

48Definition 6.2 in [Bou20].

21

where

λ(Y) := (Dh(Y)T)+[2CY].

From applying (15) to the Burer-Monteiro problem, we get that Y ∈ Mp is a second-order critical
point if and only if (16) holds and

2

[
C −

m∑
i=1

λi(Y)Ai

]
• UUT ≥ 0

for all U ∈ TYMp. (See Example 2.9 for an expression for TYMp.) Clearly these are equivalent
to the nonlinear programming criticality conditions for the Burer-Monteiro problem. (See also
Example 4.14 above.)

As a sanity check, these are indeed equivalent to the conditions given in [BVB18]—see Definition
2.3 in that reference.

It turns out that even if we aren’t at a critical point, there is a way to remove the ugly t2

2 〈gradf(x), c′′(0)〉
term. If we can’t make gradf(x) equal to zero, we just need to make the acceleration c′′(0) equal
to zero! This leads to a special kind of curve:

Definition 4.16 (Geodesic) On a Riemannian manifold M, a geodesic49 is a smooth curve c :
I →M such that c′′(t) = 0 for all t ∈ I, where I is an open interval of R.

Due to (12), a curve c on a Riemannian submanifoldM is a geodesic if and only if its classical (or
extrinsic) acceleration c̈ is everywhere normal to M.

We can also use this idea to define a special kind of retraction:

Definition 4.17 (Second-order retraction) A second-order retraction50 R on a Riemannian
manifold M is a retraction such that, for all x ∈M and all v ∈ TxM, the curve c(t) = Rx(tv) has
zero acceleration at t = 0, that is, c′′(0).

What can we say about the existence of geodesics and second-order retractions? Well, it turns
out that geodesics exist between any two sufficiently close points on an arbitrary Riemannian
manifold.51 If the Riemannian manifold is additionally complete52 (which is satisfied in particular
by compact manifolds53 and finite-dimensional Euclidean spaces54), then any two points x, y in the
same connected component can be connected by a geodesic.55 It turns out that every Riemannian
manifold admits a special second-order retraction called the exponential map.56 In general, the

49Definition 5.37 in [Bou20].
50Definition 5.41 in [Bou20]
51See the note to the right of the proof of Proposition 6.3 in [Bou20].
52See Definitions 10.5 and 10.6 as well as Theorem 10.7 in [Bou20].
53Example 10.9 in [Bou20].
54Example 10.10 in [Bou20].
55Theorem 10.8 in [Bou20].
56Definition 10.13 in [Bou20].

22

exponential map may only be defined on an open subset of TM, but if the Riemannian manifold
is additionally complete, then it is defined on all of TM.57 As an example, (8) is the exponential
map on Sn−1.58 The curve c(t) = Rx(tv) defined by (8) is a geodesic.59

Using a second-order retraction, we can obtain a second-order version of Theorem 4.7:

Theorem 4.18 (Second-order Taylor expansion of the pullback) Consider a Riemannian
manifold M of Rd equipped with a second-order retraction R. Then for all points x ∈ M we
have60

f(Rx(s)) = f(x) + 〈gradf(x), s〉+
1

2
〈Hessf(x)[s], s〉+O(||s||3).

Finally, we give a second-order sufficient condition:

Theorem 4.19 (Second-order sufficient condition) Consider a smooth function f : M → R
defined on a Riemannian manifold M. If gradf(x) = 0 and Hessf(x) � 0, then x is a strict local
minimizer of f .61

The fact that there exists a geodesic between any two sufficiently close points on a Riemannian
manifold is useful for proving this, since it lets us remove dependence on the acceleration c′′ from
our Taylor expansions (in a neighborhood at least).

5 Quotient manifolds

Quotient manifolds are a powerful tool to gain further geometric insight into manifolds which can be
decomposed into equivalence classes. Very informally speaking, a quotient manifold is the manifold
formed by the equivalence classes of another manifold. The latter is known as the total space. As
each element of a quotient manifold is an equivalence class, quotient manifolds are rather abstract
objects. As a result, we seek to understand properties of and operators on quotient manifolds in
terms of the corresponding properties of and operators on the total space. Indeed, this is much of
what Chapter 9 of [Bou20] focuses on.

One might worry that the abstractness of quotient manifolds would hinder the development of
effective algorithms on the quotient manifold. Fortunately this isn’t the case. Running Riemannian
gradient descent on the quotient manifold is actually equivalent to running Riemannian gradient
descent on the total space. So in practice, we never actually run Riemannian gradient descent on the
quotient manifold itself but instead run it on the simpler total space. Still, identifying Riemannian
gradient descent as being equivalent on both can lead to better theoretical guarantees,62 since while
the Riemannian Hessian on the total space will never be positive definite, it may be positive definite

57See the text below Definition 10.13 in [Bou20].
58Example 10.18 in [Bou20].
59Example 5.36 in [Bou20].
60Proposition 5.43 in [Bou20].
61Proposition 6.3 in [Bou20].
62See Section 9.9 in [Bou20] for a discussion of this.

23

on the quotient manifold. Running Riemannian Newton’s method on the total space isn’t equivalent
to running it on the quotient manifold, although the two return numerically close solutions.63

To get started, let ∼ be an equivalence relation on a manifold M with equivalence classes

[x] = {y ∈M | x ∼ y},

and let

M =M/ ∼ = {[x] : x ∈M}

denote the resulting quotient set. M is known as the total space,64 and the following is the key
operator which links the total space M to the quotient set M:

Definition 5.1 (Canonical/natural projection) The canonical projection or natural projection
π :M→M links the total space M to the quotient M in the following way:

π : x 7→ π(x) = [x].

In other words, π sends x ∈M to its equivalence class.

So far we have been careful to refer to M as a quotient set, but we would like to know when it is
also a quotient manifold. Unfortunately, fully understanding the definition of a quotient manifold
requires one to also understand the definition of a general manifold (as opposed to just the special
case of an embedded submanifold of a linear space—Definition 2.2—which we have covered in these
notes). This is because even if the total space M is an embedded submanifold of Rd, the quotient
set M may not be identifiable as an embedded submanifold of a linear space. (At least, I think
this is the case due to the fact that it is really a set of equivalence classes.) Indeed, this is why the
chapter on quotient manifolds (Chapter 9) comes after the chapter on general manifolds (Chapter
8) in [Bou20]. Still, as we will see, we can get very far in our practical understanding of quotient
manifolds if we just accept the definition of a general manifold to be a black box.

Definition 5.2 (Quotient manifold) Suppose we endow the quotient set M = M/ ∼ with
“smooth structure” so that it is a manifold65 in its own right. If additionally the canonical projec-
tion π is smooth and its differential Dπ(x) : TxM→ T[x]M has rank dimM (i.e., it is full rank)

for all x ∈M, then we say that M is a quotient manifold.66

Dπ(x) is a very important operator in its own right: Just as π provides a connection between
points on M and points on M, Dπ(x) provides a connection between tangent vectors on M and
tangent vectors on M (or more accurately, between tangent vectors in TxM and tangent vectors
in T[x]M). Indeed, we will not actually formally cover in these notes what a tangent vector on

63See Section 9.12 in [Bou20].
64Section 9.1 in [Bou20]. We follow the notational convention of [Bou20] in that the total space is always denoted

M and the quotient set is always denoted M.
65Roughly, you can think of a general manifold as being a space which locally resembles Euclidean space. See

Definition 8.20 in [Bou20] for a formal definition.
66Definition 9.1 in [Bou20].

24

M is, since as discussed earlier, M may not be an embedded submanifold of a linear space even
if M is. (Definition 2.6 is only for embedded submanifolds of a linear space, although the general
definition of a tangent vector, Definition 8.29 in [Bou20], is a natural extension.) That said, we can
still understand tangent vectors on M using Dπ(x). In fact, even with the definition of a general
tangent vector, it is still typically more helpful to understand tangent vectors onM through Dπ(x)!

Typically we do not actually use Definition 5.2 to check that a quotient set is a quotient manifold;
instead, we use properties of the equivalence relation ∼. In fact, there exists a characterization of
which equivalence relations give rise to quotient manifolds,67 but it is also unwieldy. Fortunately,
there exists a class of equivalence relations defined through group actions on manifolds that are
simple to identify and ubiquitous in practice. We will not formally go over this sufficient condition
for M to be a quotient manifold,68 but we will provide intuition for it through an example.

First, we will informally go over a few definitions. A Lie group is a set that is both a group (in the
abstract algebra sense) and a manifold. Examples include O(n) (the orthogonal group or the set
of n × n orthogonal matrices), SO(n) (the rotation group or the set of n × n orthogonal matrices
with determinant 1), and GL(n) (the general linear group or the set of invertible n× n matrices.)
Elements of a group can be used to transform points on a manifold—formally, these are called left
group actions and right group actions. For example, under the right conditions, right-multiplying
by an orthogonal matrix is a right-group action and left-multiplying by an orthogonal matrix is a
left-group action. These actions naturally induce equivalence relations on the set that is getting
acted on.69 (See Section 9.2 in [Bou20] for a formal treatment of the contents of this paragraph.)

If a Lie group G acts on a smooth manifold M in a way that satisfies certain properties, then
M/G is a quotient manifold. We will give the formal statement next, although we will not formally
define what all of the words in the theorem mean. That said, we will get some intuition for them
in Example 5.5.

Theorem 5.3 (Quotient manifold through a group action) If a Lie group G acts smoothly,
freely, and properly on a smooth manifold M, then the quotient space M/G is a quotient manifold
of dimension dimM− dimG.70 For manifolds that arise this way, the quotient space M/G is also
known as the orbit space.71

We will gain some intuition behind this theorem in Example 5.5, but first, a theorem that will be
useful in the upcoming example:

Theorem 5.4 (Open subsets of embedded submanifolds are embedded submanifolds) Let
M be an embedded submanifold of Rd. Any open subset of M is also an embedded submanifold of
Rd, with the same dimension and tangent spaces as M.72

Example 5.5 (Mfull
p /O(p) is a quotient manifold) Let Mfull

p denote the open subset of Mp

that contains its rank p elements. By Theorem 5.4, we have thatMfull
p is an embedded submanifold

of Rnp with the same dimension and tangent spaces as Mp.

67Proposition 3.4.2 in [AMS07].
68See Section 9.2 in [Bou20] for a formal treatment.
69Definition 9.12 in [Bou20].
70Theorem 8.17 in [Bou20].
71Definition 9.12 in [Bou20].
72Proposition 3.17 in [Bou20].

25

We claim thatMfull
p /O(p) is a quotient manifold, where the equivalence classes are formed by O(p)

acting on Mfull
p through right multiplication. In other words,

Y ∼ V ⇐⇒ Y = V Q for some Q ∈ O(p). (17)

To prove that Mfull
p /O(p) is indeed a quotient manifold, it is sufficient to check that O(p) acts

smoothly, freely, and properly on Mfull
p . The group action is smooth since the map from Mfull

p ×
O(p) toMfull

p defined by (Y,Q) 7→ Y Q is smooth. The group action is free because only the identity
element of the group fixes any given Y . In other words,

Y Q = Y for some Y ∈Mfull
p ⇒ Q = Ip. (18)

The group action is proper because O(p) is compact, and every smooth action by a compact Lie

group is proper.73 We conclude that Mfull
p /O(p) is indeed a quotient manifold. As a sanity check,

Mfull
p is stated to be a quotient manifold in [JBAS10] (see Section 4) and [WW20] (see page 18).

We can also obtain the dimension of Mfull
p /O(p) using Theorem 5.3:

dim(Mfull
p /O(p)) = dimMfull

p − dim O(p)

= np−m− p(p− 1)

2
,

where we used the fact dimMfull
p = dimMp due to Theorem 5.4, and the result from Example 2.15.

The expression for dim O(p) can be found in Section 7.4 in [Bou20]. To confirm our expression,
see page 18 of [WW20].

A natural question is whether Mp/O(p) (with equivalence classes defined as in (17)) is also a
quotient manifold. It turns out that if Mp contains rank-deficient matrices, then Mp/O(p) is not
a quotient manifold, as noted in the footnote at the bottom of page 18 in [WW20].74

For the next definition, it will be useful to be able to talk about the set containing all points in
the total space M which map into the same equivalence class on the quotient manifold M. The
notation we will use for this is π−1(π(x)). (π is defined in Definition 5.1.) In other words,

π−1(π(x)) = {y ∈M | x ∼ y}.

Definition 5.6 (Fiber, orbit) Let M = M/ ∼ be a quotient manifold. For any x ∈ M, the
equivalence class F = π−1(π(x)), also called a fiber, is closed in M and it is an embedded subman-
ifold of M. Its tangent spaces are given by

TyF = ker Dπ(y) ⊆ TyM.

73Proposition 9.16 in [Bou20].
74They prove that Mp/O(p) is not a quotient manifold by showing that it violates Condition (i) of Proposition

3.4.2 in [AMS07]. (Proposition 3.4.2 is a complete characterization of which equivalence relations lead to quotient
manifolds.) I think another way to prove it would be to show that the fibers (Definition 5.6) that would arise were
Mp/O(p) a quotient manifold could have different dimensions, which is a contradiction. This is discussed on page
203 of [Bou20]; see also Exercise 9.7 in that reference.

26

In particular, dimF = dimM− dimM.75

If M arises as the action of a Lie group G on M as in Theorem 5.3, then the fiber π−1(π(x)) is
also known as the orbit of x ∈M under the action associated with G.76

This definition (which is really part theorem) says that the equivalence classes on the total space
partition the total space into many embedded submanifolds. Furthermore, we begin to see through
Definition 5.6 the importance of the operator Dπ(y), which was discussed earlier.

Example 5.7 (Fibers of Mfull
p /O(p)) The fiber containing Y ∈Mfull

p is precisely

F = {Z ∈Mfull
p | Y ∼ Z} = {Y Q | Q ∈ O(p)}.

In this case, it is not hard to calculate TV F directly for some V ∈ F using Definition 2.6. All
tangent vectors in TV F take the form c′(0) for some smooth curve c : I ⊆ R → F with c(0) = V .
Any such curve is necessarily of the form c(t) = V Q(t) where Q : I → O(p) is a smooth curve on
the manifold O(p) with Q(0) = Ip. Then, all tangent in TV F are of the form V Q′(0). The tangent
space to O(p) at Q(0) = Ip turns out to be the set of p× p skew-symmetric matrices,77 so we have
that

TV F = {V S | S ∈ Rp×p, S + ST = 0}.

It is not hard to check that TV F is indeed a subset of TVMfull
p , as expected. (See Example 2.9,

and recall that TVMfull
p = TVMp due to Theorem 5.4.)

For a derivation of TV F involving ker Dπ(V), see Example 9.4 in [Bou20]. (The above also basically
follows Example 9.4, although we are working with a slightly different, albeit functionally the same,
manifold.)

As a sanity check, this is actually the expression obtained in [WW20]—see the bottom of page 6 in
that paper. (Note that they use the term “orbit” instead of “fiber.”)

Finally, we calculate dimF using our expression for TV F and the fact that by definition, the dimen-
sion of a manifold is just the dimension of its tangent space (Definition 2.13). This immediately

implies that dimF =
(
p
2

)
= p(p−1)

2 . As a quick check, this is indeed equal to

dimMfull
p − dim(Mfull

p /O(p)) = (np−m)−
(
np−m− p(p− 1)

2

)
.

We would now like to obtain a correspondence between tangent vectors of the total space M
and tangent vectors of the quotient manifold M = M/ ∼. The appropriate tool to do this is
Dπ(x) : TxM → T[x]M, which is surjective due to Definition 5.2. However, it is not one-to-one,
so to fix this we need to restrict its domain. Definition 5.6 provides a very natural way to do
this—we can partition the domain of Dπ(x), aka TxM, into those vectors in TxF = ker Dπ(x) and
those vectors in its orthogonal complement, (TxF)⊥ = (ker Dπ(x))⊥. Then, the restriction Dπ(x)
to (TxF)⊥ = (ker Dπ(x))⊥ forms a bijection between (TxF)⊥ = (ker Dπ(x))⊥ and T[x]M. We
formalize this below with proper terminology:

75Proposition 9.3 in [Bou20].
76Definition 9.12 in [Bou20].
77Section 7.4 in [Bou20].

27

Definition 5.8 (Vertical space, horizontal space) For a quotient manifold M = M/ ∼, the
vertical space78 at x ∈M is the subspace

Vx = TxF = ker Dπ(x)

where F = {y ∈ M | y ∼ x} is the fiber of x. If M is Riemannian submanifold of Rd (so that we
have an inner product), we call the orthogonal complement of Vx the horizontal space at x:

Hx = (Vx)⊥ = {u ∈ TxM | 〈u, v〉 = 0 for all v ∈ Vx}.

Intuitively, the vertical directions (aka Vx) are all of the “uninteresting” directions of TxM.

Recall from the text above Definition 5.8 that the restriction of Dπ(x) : TxM→ T[x]M to Hx =

(TxF)⊥ = (ker Dπ(x))⊥, aka Dπ(x)|Hx
, is a bijection. This bijection allows us to use “concrete”

horizontal vectors in TxM to represent “abstract” vectors in T[x]M.

Definition 5.9 (Horizontal lift) Consider a point x ∈M and a tangent vector ξ ∈ T[x]M. The
horizontal lift79 of ξ at x is the unique horizontal vector u ∈ Hx such that Dπ(x)[u] = ξ. We write

u =
(

Dπ(x)|Hx

)−1
[ξ] = liftx(ξ).

Horizontal lifts are critical for connecting objects on the quotient manifold to objects on the total
space (e.g., retractions, vector fields, connections, etc.) We only include two examples in these
notes:

Theorem 5.10 (Riemannian gradient result for quotient manifolds) The Riemannian gra-
dient of f on a Riemannian quotient manifold is related to the Riemannian gradient of the lifted
function f = f ◦ π on the total space via80

liftx(gradf([x])) = gradf(x)

for all x ∈M.

We haven’t actually talked about objective functions at all in this section, so in particular we
haven’t talked about what it means to lift a function. It is super intuitive though—precomposing
a function f defined on the quotient manifold with the canonical projection π instantly gives you
an “equivalent” function on the total space. And in fact, the only objective functions on the total
space that are “interesting” in the first place (with respect to the quotient geometry at least) are
those that are the lift of some function on the quotient manifold. If this isn’t the case, then your
objective function on the total space has different values among elements in the same equivalence
class, at which point the quotient geometry doesn’t help much.

Note that Theorem 5.10 implies that the Riemannian gradient on the total space, aka gradf(x), is
always a horizontal vector (because the output of a lift is always a horizontal vector). This makes

78Definition 9.23 in [Bou20].
79Definition 9.24 [Bou20].
80Proposition 9.38 in [Bou20].

28

sense intuitively—the Riemannian gradient should be orthogonal to the “flat” directions, aka the
vertical space Vx. (After all, the Euclidean gradient is always orthogonal to the level curves—we
should expect the same of the Riemannian gradient.)

We now give a similar result for the Hessian without much commentary:

Theorem 5.11 (Riemannian Hessian result for quotient manifolds) The Riemannian Hes-
sian of f on a Riemannian quotient manifold is related to the Riemannian Hessian of the lifted
function f = f ◦ π on the total space as

liftx(Hessf([x])[ξ]) = ProjHx (Hessf(x)[u])

for all x ∈M and ξ ∈ T[x]M, with u = liftx(ξ). Here ProjHx is the orthogonal projector onto Hx.

The following theorems are useful for analyzing critical points in the total space:

Theorem 5.12 (Critical points result for quotient manifolds) Let f : M → R be smooth
on a Riemannian quotient manifold M =M/ ∼ with canonical projection π, and denote the lifted
function f = f ◦ π. From Theorem 5.10, it is clear that x ∈ M is a first-order critical point for
f if and only if [x] is a first-order critical point for f . Furthermore, it can be shown that x is a
second-order critical point for f if and only if [x] is a second-order critical point for f .81

We can say more about the Riemannian Hessian at a first-order critical point:

Theorem 5.13 (Riemannian Hessian at a critical point result for quotient manifolds)
With the same setup as in Theorem 5.12, let x ∈ M be a first-order critical point. Then the
eigenvalues of Hessf(x) are exactly the eigenvalues of Hessf([x]) together with a set of dim Vx =
dimM− dimM eigenvalues equal to zero. In particular, the vertical space Vx is included in the
kernel of Hessf(x). For every eigenvector of Hessf([x]), there is a corresponding eigenvector of
Hessf(x) which lies in Hx and has the same eigenvalue.82 (Indeed, the latter is just the horizontal
lift of the former.)

The above implies that if dimM < dimM, the cost function f on the total spaceM cannot admit
second-order critical points where the Hessian is positive definite. Fortunately this isn’t an issue
because as explained in Section 9.9 in [Bou20], running Riemannian gradient descent on the total
space is equivalent to running it on the Hessian. Thus, if the Hessian is positive definite on the
quotient manifold, we will get the same benefits as if it were positive definite on the total space.

It is also possible to extend Theorem 4.19 to this scenario:

Theorem 5.14 (Second-order sufficient condition for quotient manifolds) With the same
setup as in Theorem 5.12, let x ∈ M be such that gradf(x) = 0 (which is true if and only if
gradf([x]) = 0 due to Theorem 5.10) and Hessf([x]) � 0. Then x ∈M is a local minimum.83

81Exercise 9.45 in [Bou20].
82Exercise 9.45 and Lemma 9.40 in [Bou20]. Although part of this theorem I derived myself when solving Exercise

9.45.
83This result is not given in [Bou20], but I was able to prove it myself. Note that even if x is a local minimum, it

will never be a strict local minimum due to the “flat” directions corresponding to the vertical space Vx.

29

Note that due to Theorem 5.13, we do not need to check that Hessf([x]) � 0 directly. It is in-
stead sufficient to show that the only eigenvectors of Hessf(x) with 0 as their eigenvalue are those
dim Vx = dimM− dimM of them which lie in Vx.

For example, Theorem 5.14 is used heavily in [WW20] to show that certain second-order critical
points are additionally local minima. See Definition 3 and Remark 1 in that paper.

5.1 Quotient manifolds: material not covered

The material in this section is heavily based off of Chapter 9 of [Bou20]. That said, Chapter 9 is very
long and we skipped a ton of material. Nearly all of the material skipped has to do with connecting
objects on the total space to the corresponding objects on the quotient manifold (e.g., smooth
maps, vector fields, retractions, connections, etc.) Section 9.13 is worth reading in particular since
they talk about the specific scenario where the total space M is an embedded submanifold of Rd.

6 Riemannian gradient descent

To be done. For now, refer to Chapter 4 in [Bou20].

7 Riemannian second-order methods

To be done. For now, refer to Chapter 6 in [Bou20].

A Examples of manifolds

To be done. For now, refer to Chapter 7 in [Bou20], which is full of examples.

B Regarding product manifolds

Definition B.1 (Product manifold) Let M,M′ be embedded submanifolds of Rd,Rd′ respec-
tively. Then M×M′ is an embedded submanifold of Rd×Rd′ of dimension dimM+ dimM′ such
that

T(x,x′)(M×M′) = TxM× Tx′M′.

Basically, product manifolds behave exactly as you would expect them to: “X” for a product
manifold is typically just the product or concatenation of “X” over each individual manifold which
makes up the product manifold.

More details/examples to be added later.

30

References

[AMS07] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds.
Princeton University Press, USA, 2007.

[Bou16] Nicolas Boumal. A riemannian low-rank method for optimization over semidefinite ma-
trices with block-diagonal constraints, 2016.

[Bou20] Nicolas Boumal. An introduction to optimization on smooth manifolds. Available online,
Nov 2020.

[BVB18] Nicolas Boumal, Vladislav Voroninski, and Afonso Bandeira. Deterministic guarantees
for burer-monteiro factorizations of smooth semidefinite programs. Communications on
Pure and Applied Mathematics, 73, 04 2018.

[JBAS10] M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre. Low-rank optimization on the cone
of positive semidefinite matrices. SIAM Journal on Optimization, 20(5):2327–2351, 2010.

[LY16] David G. Luenberger and Yinyu Ye. Linear and nonlinear programming, fourth edition,
volume 228. New York, NY: Springer, 2016.

[WW20] Irène Waldspurger and Alden Waters. Rank optimality for the Burer-Monteiro factor-
ization. SIAM J. Optim., 30(3):2577–2602, 2020.

31

	Introduction
	Running examples
	Notation
	Terminology

	First-order geometry
	First-order geometry: material not covered
	First-order geometry: extending beyond the embedded case

	Second-order geometry
	Second-order geometry: material not covered
	Second-order geometry: extending beyond the embedded case

	Retractions, Taylor expansions, and optimality conditions
	Quotient manifolds
	Quotient manifolds: material not covered

	Riemannian gradient descent
	Riemannian second-order methods
	Examples of manifolds
	Regarding product manifolds

